Quantum Spheres for Osp Q (1/2)

نویسندگان

  • N Aizawa
  • R Chakrabarti
چکیده

Using the corepresentation of the quantum supergroup OSp q (1/2) a general method for constructing noncommutative spaces covariant under its coaction is developed. In particular, a one-parameter family of covariant algebras, which may be interpreted as noncommutative superspheres, is constructed. It is observed that embedding of the supersphere in the OSp q (1/2) algebra is possible. This realization admits infinitesimal characterizationà la Koornwinder. A covariant oscillator realization of the supersphere is also presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ju l 2 00 6 Universal T - matrix , Representations of OSp q ( 1 / 2 ) and Little Q - Jacobi Polynomials

We obtain a closed form expression of the universal T-matrix encapsulating the duality of the quantum superalgebra U q [osp(1/2)] and the corresponding su-pergroup OSp q (1/2). The finite dimensional representations of the quantum su-pergroup OSp q (1/2) are readily constructed employing the said universal T-matrix and the known finite dimensional representations of the dually related deformed ...

متن کامل

Universal T - matrix , Representations of OSp q ( 1 / 2 ) and Little Q - Jacobi Polynomials

We obtain a closed form expression of the universal T-matrix encapsulating the duality between the quantum superalgebra U q [osp(1/2)] and the corresponding su-pergroup OSp q (1/2). The classical q → 1 limit of this universal T matrix yields the group element of the undeformed OSp(1/2) supergroup. The finite dimensional representations of the quantum supergroup OSp q (1/2) are readily construct...

متن کامل

1 9 Se p 20 06 Universal T - matrix , Representations of OSp q ( 1 / 2 ) and Little Q

We obtain a closed form expression of the universal T-matrix encapsulating the duality of the quantum superalgebra U q [osp(1/2)] and the corresponding supergroup OSp q (1/2). The classical q → 1 limit of this universal T matrix yields the group element of the undeformed OSp(1/2) supergroup. The finite dimensional representations of the quantum supergroup OSp q (1/2) are readily constructed emp...

متن کامل

QUANTUM SUPER SPHERES AND THEIR TRANSFORMATION GROUPS, REPRESENTATIONS AND LITTLE t-JACOBI POLYNOMIALS

Quantum super 2-shpheres and the corresponding quantum super transformation group are introduced in analogy to the well-known quantum 2-shpheres and quantum SL(2), connection between little t-Jacobi polynomials and the finite dimensional representations of the quantum super group is formulated, and the Peter-Weyl theorem is obtained. The quantum group SUq(2) introduced by Woronowicz and the qua...

متن کامل

N ov 2 00 7 Basic Hypergeometric Functions and Covariant Spaces for Even Dimensional Representations of

Representations of the quantum superalgebra U q [osp(1/2)] and their relations to the basic hypergeometric functions are investigated. We first establish Clebsch-Gordan decomposition for the superalgebra U q [osp(1/2)] in which the representations having no classical counterparts are incorporated. Formulae for these Clebsch-Gordan coefficients are derived, and it is observed that they may be ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005